
PySyComp: A Symbolic
Python Library

Elizabeth Stippell

0

Other Projects:

• Work for Los Alamos National Laboratory
• Comparing properties computed with a Machine

Learning Potential (ANI) with properties computed
by a classical potential (EAM) for Uranium Oxide
Systems

• Work in Collaboration with the Beljonne Group
at Umons
• Using projection operator diabatization on 2D lead

halide perovskite with organic spacers to study the
charge transfer between layers

1

Outline: PySyComp

Background &
Motivation

2

Commutators
Computing the

commutator

`steps` function

Quantized
Hamiltonian

Dynamics
Methods development

Applications

Background &
Motivation

• Python is a good
introductory programming
language for students to
gain experience in

• There exists ample
resources for students for
Python

3

Background & Motivation

• Symbolic libraries create a simple way for
students to learn how to code in a way
that is familiar to them

• Objectives:

1. Develop a method for symbolically
computing equations of motion

2. Apply equations of motion to various
systems

4

Commutators
• An introductory problem to quantum

mechanics for undergraduate students

• Foundation for computing the equations of
motion for Quantized Hamiltonian Dynamics

5

መ𝐴, ෠𝐵

Theory: Commutators

መ𝐴, ෠𝐵 = መ𝐴 ∗ ෠𝐵 − ෠𝐵 ∗ መ𝐴

Examples:
ො𝑥, ෞ𝑝𝑥 Ψ = 𝑖ℏΨ

ො𝑥, ෢𝑝𝑥
2 Ψ = 2𝑖ℏ𝑝Ψ

෢𝑝𝑥
2, ෢𝑥2 Ψ = 2ℏ2(−2𝑞Ψ′ − Ψ)

6

Code: Commutators

7

Code: Linear Momentum Operator

8

𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒(, 𝑥)

Code: Computing Commutators

ො𝑥, ෞ𝑝𝑥 𝑓(𝑥) = 𝑖ℏ𝑓(𝑥)

ො𝑥, ෢𝑝𝑥
2 𝑓(𝑥) = 2𝑖ℏ𝑝𝑓(𝑥)

෢𝑝𝑥
2, ෢𝑥2 𝑓(𝑥) = 2ℏ2(−2𝑥𝑓′(𝑥) − 𝑓(𝑥))

9

Code: `steps` Function

10

ො𝑥, ෞ𝑝𝑥

෢𝑝𝑥
2, ෢𝑥2

• Provides a way to help students learn how to
compute commutators rather than just giving
students an answer

Jupyter Notebook: Commutators

11

Quantized Hamiltonian
Dynamics

Theory

Methods Development

Applications

12

Theory: Quantized Hamiltonian Dynamics

• Based on the paper:
Akimov, A. V.; Prezhdo, O. V. Formulation of Quantized Hamiltonian Dynamics in Terms of Natural

Variables. J. Chem. Phys. 2012, 137 (22), 224115. https://doi.org/10.1063/1.4770224.

Heisenberg Equation of Motion: 𝑖ℏ
𝑑 ෠𝐴

𝑑𝑡
= [መ𝐴, ෡𝐻]

The Hamiltonian: ෡𝐻 =
ො𝑝2

2𝑚
+ 𝑉 ො𝑞

13

Theory: Quantized Hamiltonian Dynamics

• Decomposition Procedure:
• To end the list of equations of motion, a closure approximation is used

𝐴𝐵𝐶 ≈ 𝐴𝐵 𝐶 + 𝐴𝐶 𝐵 + 𝐵𝐶 𝐴 − 2 𝐴 𝐵 𝐶

• This creates a decomposition into a product of lower order variables, thus
ending the hierarchy

14

Theory: Quantized Hamiltonian Dynamics

𝑑 𝑞

𝑑𝑡
=

𝑝

𝑚

𝑑 𝑝

𝑑𝑡
= − 𝑉′

𝑑 𝑞2

𝑑𝑡
= 2

𝑝𝑞 𝑠

𝑚

𝑑 𝑝𝑞 𝑠

𝑑𝑡
=

𝑝2

𝑚
− 𝑞𝑉′

𝑠

𝑑 𝑝2

𝑑𝑡
= −2 𝑝𝑉′

𝑠

𝐴𝐵 𝑠 =
𝐴𝐵 + 𝐵𝐴

2

15

Quantized Hamiltonian
Dynamics

Methods Development

16

𝑑 𝑞

𝑑𝑡
=

𝑝

𝑚

𝑑 𝑝

𝑑𝑡
= − 𝑉′

𝑑 𝑞2

𝑑𝑡
= 2

𝑝𝑞 𝑠

𝑚

𝑑 𝑝𝑞 𝑠

𝑑𝑡
=

𝑝2

𝑚
− 𝑞𝑉′

𝑠

𝑑 𝑝2

𝑑𝑡
= −2 𝑝𝑉′

𝑠

Objective: Have Python derive these
formulas of interest

Code: Quantized Hamiltonian Dynamics
The Hamiltonian:

17

Code: Quantized Hamiltonian Dynamics

• 150+ Lines of Code
The Time Derivative Function:

𝑖ℏ
𝑑 መ𝐴

𝑑𝑡
= [መ𝐴, ෡𝐻]

18

Code: Quantized Hamiltonian Dynamics

1. Compute the Hamiltonian using the placeholder
values

The Time Derivative Function:
𝑖ℏ

𝑑 መ𝐴

𝑑𝑡
= [መ𝐴, ෡𝐻]

19

𝑡𝑖𝑚𝑒_𝑑𝑒𝑟𝑖𝑣(𝑞, 1)

--hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*q*f(q) - v(q)*q*f(q) +
 q*-hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*f(q) + q*v(q)*f(q)

Objective: Replace
the “placeholder”
values with what is
supposed to be taken
the derivative of

Code: Quantized Hamiltonian Dynamics

2. Find the “placeholder” values and the “end” values
The Time Derivative Function:

𝑖ℏ
𝑑 መ𝐴

𝑑𝑡
= [መ𝐴, ෡𝐻]

20

--hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*q*f(q) - v(q)*q*f(q) +
 q*-hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*f(q) + q*v(q)*f(q)

𝑡𝑖𝑚𝑒_𝑑𝑒𝑟𝑖𝑣(𝑞, 1)

Code: Quantized Hamiltonian Dynamics

3. Find the function that will be replace the placeholder
The Time Derivative Function:

𝑖ℏ
𝑑 መ𝐴

𝑑𝑡
= [መ𝐴, ෡𝐻]

21

--hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*q*f(q) - v(q)*q*f(q) +
 q*-hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*f(q) + q*v(q)*f(q)

𝑡𝑖𝑚𝑒_𝑑𝑒𝑟𝑖𝑣(𝑞, 1)

Code: Quantized Hamiltonian Dynamics

4. Replace the placeholder with the expression of
interest

The Time Derivative Function:
𝑖ℏ

𝑑 መ𝐴

𝑑𝑡
= [መ𝐴, ෡𝐻]

22

--hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*q*f(q) - v(q)*q*f(q) +
 q*-hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*f(q) + q*v(q)*f(q)

Code: Quantized Hamiltonian Dynamics

5. Solve

The Time Derivative Function:
𝑖ℏ

𝑑 መ𝐴

𝑑𝑡
= [መ𝐴, ෡𝐻]

23

24

The Time Derivative Function:

Code: Quantized Hamiltonian Dynamics

--hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*q*f(q) - v(q)*q*f(q) +
 q*-hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*f(q) + q*v(q)*f(q)

𝑑 𝑞

𝑑𝑡
=

𝑝

𝑚

𝑑 𝑝

𝑑𝑡
= − 𝑉′

𝑑 𝑞2

𝑑𝑡
= 2

𝑝𝑞 𝑠

𝑚

𝑑 𝑝𝑞 𝑠

𝑑𝑡
=

𝑝2

𝑚
− 𝑞𝑉′

𝑠

𝑑 𝑝2

𝑑𝑡
= −2 𝑝𝑉′

𝑠

Code: Computing Equations of Motion for
Quantized Hamiltonian Dynamics

25

Quantized Hamiltonian
Dynamics

Applications

26

𝑑 𝑞

𝑑𝑡
=

𝑝

𝑚

𝑑 𝑝

𝑑𝑡
= − 𝑉′

𝑑 𝑞2

𝑑𝑡
= 2

𝑝𝑞 𝑠

𝑚

𝑑 𝑝𝑞 𝑠

𝑑𝑡
=

𝑝2

𝑚
− 𝑞𝑉′

𝑠

𝑑 𝑝2

𝑑𝑡
= −2 𝑝𝑉′

𝑠

Results: Quantized Hamiltonian Dynamics

Morse Potential:
𝑉(𝑞) = 𝐷 ∗ 1 − 𝑒−α 𝑞−𝑞0

2

Variables:

mass = mass of water

q0 = equilibrium position

alpha = “width” of potential

D = well depth

dt = timestep

27

• Graphs created with MatPlotLib library

Variables:

mass = 1836 a.u.

q0 = 0.0 Å

q = 0.15 Å

alpha = 2.567 Å-1

D = 4.419 eV

dt = 0.1 fs

28

Results: Quantized Hamiltonian Dynamics

Akimov, A. V.; Prezhdo, O. V. Formulation of Quantized Hamiltonian Dynamics in Terms of Natural Variables. J. Chem. Phys. 2012, 137 (22), 224115.

https://doi.org/10.1063/1.4770224.

Morse Potential

• Graphs created with MatPlotLib library

29

Results: Quantized Hamiltonian Dynamics

Symbolic Method Original Method

Morse Potential

• Provides a simple yet versatile way of
computing the equations of motion

• Computes the equations of motion using
one function

• Can be applied to any potential

• Had to compute each equation of motion
by hand

• Uses different functions for each equation
of motion

• Specific to one potential

30

Results: Quantized Hamiltonian Dynamics

QHD Method Classical Method

Morse Potential

• Graphs created with MatPlotLib library

Results: Quantized Hamiltonian Dynamics

Gaussian Potential:
𝑉 𝑞 = −𝑉0 ∗ 𝑒 −α∗𝑞2

Where:

α =
1

2 ∗ σ2

Variables:

mass = mass of water

V0 = well depth

sigma = broadness of well

q = position

dt = timestep

31

• Graphs created with MatPlotLib library

32

Results: Quantized Hamiltonian Dynamics

Variables:
mass = 1836 a.u.
V0 = 5 eV
sigma = 1.5 Å
q = 0.15 Å
dt = 0.1 fs

Gaussian Potential

• Graphs created with MatPlotLib library

Jupyter Notebook: Quantized Hamiltonian
Dynamics

33

Results: Quantized Hamiltonian Dynamics

• Tunneling

Potential:

𝑉 𝑞 =
𝑞2

2
+ 𝑎𝑞3

Variables:

mass = mass of water

q = position

a = barrier size

dt = timestep

34

Results: Quantized Hamiltonian Dynamics

Tunneling

35

Variables:
mass = 1836 a.u.
q = 1 Å
a = 0.1
dt = 0.1 fs

Conclusions

• The PySyComp library is an effective introduction to using Python,
Jupyter Notebooks, and the SymPy and Matplotlib libraries

• The `time_deriv` function is effective in producing the desired
equations of motions

Working on…

• Running the QHD code from the command line

• Optimizing the code

36

Extra Slides

37

Outline

Background &
Motivation

38

Particle in a Box
Computing the
normalization

constant, expectation
values

Commutators
Computing the

commutator

`steps` function

Quantized
Hamiltonian

Dynamics
Methods development

Applications

Particle in a Box
An Introductory Problem to
Quantum Mechanics for
Undergraduate Students

39

Theory: Particle in a Box

• If x < 0:
• 𝑉 = ∞

• If x > L:
• 𝑉 = ∞

• If 0 < x < L:
• 𝑉 = 0

Ψ = sin(
𝑛𝜋𝑥

𝐿
)

40

n=1

n=2

• Graphs created with MatPlotLib library

Code: Particle in a Box
PIB Wave Function:

41

PIB Normalization Constant:

PIB Expectation Value:

• Provides a straightforward way to compute different values associated with the Particle in a Box
problem

Jupyter Notebook: Particle in a Box

42

Results: Quantized Hamiltonian Dynamics

• Morse Potential: Change of Variables

43

𝑑 𝑞

𝑑𝑡
=

𝑝

𝑚

𝑑 𝑝

𝑑𝑡
= − 𝑉′

𝑑 𝑞2

𝑑𝑡
= 2

𝑝𝑞 𝑠

𝑚

𝑑 𝑝𝑞 𝑠

𝑑𝑡
=

𝑝2

𝑚
− 𝑞𝑉′

𝑠

𝑑 𝑝2

𝑑𝑡
= −2 𝑝𝑉′

𝑠

𝑑 𝑝

𝑑𝑡
= 2𝛼𝐷[𝑥2 − 𝑥]

𝑑 𝑥

𝑑𝑡
= −𝛼

(𝑝𝑥)𝑠

𝑚

𝑑 𝑥2

𝑑𝑡
= −2𝛼

(𝑝𝑥2)𝑠

𝑚

𝑑 𝑝𝑞 𝑠

𝑑𝑡
=

𝑝2

𝑚
+ 2𝛼𝐷[𝑞𝑥2

𝑠 − 𝑞𝑥 𝑠]

𝑑 𝑝2

𝑑𝑡
= 4𝛼𝐷[(𝑝𝑥2)𝑠 − 𝑝𝑥 𝑠]

Same

Same

𝑥 = 𝑒−𝛼𝑞 𝑉 𝑞 = 𝐷[𝑥2 − 2 𝑥]

44

Results: Quantized Hamiltonian Dynamics

Symbolic Method Original Method

Morse Potential

Variables:

mass = 1836 a.u.

q0 = 0.0 Å

alpha = 2.567 Å-1

D = 4.419 eV

dt = 0.1 fs

45

Results: Quantized Hamiltonian Dynamics

Akimov, A. V.; Prezhdo, O. V. Formulation of Quantized Hamiltonian Dynamics in Terms of

Natural Variables. J. Chem. Phys. 2012, 137 (22), 224115. https://doi.org/10.1063/1.4770224.

46

Results: Quantized Hamiltonian Dynamics

Symbolic Method Original Method

47

Results: Quantized Hamiltonian Dynamics

Energy Conservation

48

Results: Quantized Hamiltonian Dynamics

49

Results: Quantized Hamiltonian Dynamics

Energy Conservation

50

Results: Quantized Hamiltonian Dynamics

	Slide 0: PySyComp: A Symbolic Python Library
	Slide 1: Other Projects:
	Slide 2: Outline: PySyComp
	Slide 3: Background & Motivation
	Slide 4: Background & Motivation
	Slide 5: Commutators
	Slide 6: Theory: Commutators
	Slide 7: Code: Commutators
	Slide 8: Code: Linear Momentum Operator
	Slide 9: Code: Computing Commutators
	Slide 10: Code: `steps` Function
	Slide 11: Jupyter Notebook: Commutators
	Slide 12: Quantized Hamiltonian Dynamics
	Slide 13: Theory: Quantized Hamiltonian Dynamics
	Slide 14: Theory: Quantized Hamiltonian Dynamics
	Slide 15: Theory: Quantized Hamiltonian Dynamics
	Slide 16: Quantized Hamiltonian Dynamics
	Slide 17: Code: Quantized Hamiltonian Dynamics
	Slide 18: Code: Quantized Hamiltonian Dynamics
	Slide 19: Code: Quantized Hamiltonian Dynamics
	Slide 20: Code: Quantized Hamiltonian Dynamics
	Slide 21: Code: Quantized Hamiltonian Dynamics
	Slide 22: Code: Quantized Hamiltonian Dynamics
	Slide 23: Code: Quantized Hamiltonian Dynamics
	Slide 24: Code: Quantized Hamiltonian Dynamics
	Slide 25: Code: Computing Equations of Motion for Quantized Hamiltonian Dynamics
	Slide 26: Quantized Hamiltonian Dynamics
	Slide 27: Results: Quantized Hamiltonian Dynamics
	Slide 28: Results: Quantized Hamiltonian Dynamics
	Slide 29: Results: Quantized Hamiltonian Dynamics
	Slide 30: Results: Quantized Hamiltonian Dynamics
	Slide 31: Results: Quantized Hamiltonian Dynamics
	Slide 32: Results: Quantized Hamiltonian Dynamics
	Slide 33: Jupyter Notebook: Quantized Hamiltonian Dynamics
	Slide 34: Results: Quantized Hamiltonian Dynamics
	Slide 35: Results: Quantized Hamiltonian Dynamics
	Slide 36: Conclusions
	Slide 37: Extra Slides
	Slide 38: Outline
	Slide 39: Particle in a Box
	Slide 40: Theory: Particle in a Box
	Slide 41: Code: Particle in a Box
	Slide 42: Jupyter Notebook: Particle in a Box
	Slide 43: Results: Quantized Hamiltonian Dynamics
	Slide 44: Results: Quantized Hamiltonian Dynamics
	Slide 45: Results: Quantized Hamiltonian Dynamics
	Slide 46: Results: Quantized Hamiltonian Dynamics
	Slide 47: Results: Quantized Hamiltonian Dynamics
	Slide 48: Results: Quantized Hamiltonian Dynamics
	Slide 49: Results: Quantized Hamiltonian Dynamics
	Slide 50: Results: Quantized Hamiltonian Dynamics

