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Other Projects:

• Work for Los Alamos National Laboratory
• Comparing properties computed with a Machine 

Learning Potential (ANI) with properties computed 
by a classical potential (EAM) for Uranium Oxide 
Systems

• Work in Collaboration with the Beljonne Group 
at Umons
• Using projection operator diabatization on 2D lead 

halide perovskite with organic spacers to study the 
charge transfer between layers
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Background & 
Motivation

• Python is a good 
introductory programming 
language for students to 
gain experience in

• There exists ample 
resources for students for 
Python

3



Background & Motivation

• Symbolic libraries create a simple way for 
students to learn how to code in a way 
that is familiar to them

• Objectives:

1. Develop a method for symbolically 
computing equations of motion

2. Apply equations of motion to various 
systems
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Commutators
• An introductory problem to quantum 

mechanics for undergraduate students

• Foundation for computing the equations of 
motion for Quantized Hamiltonian Dynamics
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መ𝐴, ෠𝐵



Theory: Commutators

መ𝐴, ෠𝐵 = መ𝐴 ∗ ෠𝐵 − ෠𝐵 ∗ መ𝐴

Examples:
ො𝑥, ෞ𝑝𝑥 Ψ = 𝑖ℏΨ

ො𝑥, ෢𝑝𝑥
2 Ψ = 2𝑖ℏ𝑝Ψ

෢𝑝𝑥
2, ෢𝑥2 Ψ = 2ℏ2(−2𝑞Ψ′ − Ψ)

6



Code: Commutators
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Code: Linear Momentum Operator
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𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒( , 𝑥)



Code: Computing Commutators

ො𝑥, ෞ𝑝𝑥 𝑓(𝑥) = 𝑖ℏ𝑓(𝑥)

ො𝑥, ෢𝑝𝑥
2 𝑓(𝑥) = 2𝑖ℏ𝑝𝑓(𝑥)

෢𝑝𝑥
2, ෢𝑥2 𝑓(𝑥) = 2ℏ2(−2𝑥𝑓′(𝑥) − 𝑓(𝑥))
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Code: `steps` Function
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ො𝑥, ෞ𝑝𝑥

෢𝑝𝑥
2, ෢𝑥2

• Provides a way to help students learn how to 
compute commutators rather than just giving 
students an answer



Jupyter Notebook: Commutators
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Quantized Hamiltonian 
Dynamics

Theory

Methods Development

Applications
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Theory: Quantized Hamiltonian Dynamics

• Based on the paper: 
Akimov, A. V.; Prezhdo, O. V. Formulation of Quantized Hamiltonian Dynamics in Terms of Natural 

Variables. J. Chem. Phys. 2012, 137 (22), 224115. https://doi.org/10.1063/1.4770224. 

Heisenberg Equation of Motion:  𝑖ℏ
𝑑 ෠𝐴

𝑑𝑡
= [ መ𝐴, ෡𝐻]

The Hamiltonian:     ෡𝐻 =
ො𝑝2

2𝑚
+ 𝑉 ො𝑞
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Theory: Quantized Hamiltonian Dynamics

• Decomposition Procedure:
• To end the list of equations of motion, a closure approximation is used

𝐴𝐵𝐶 ≈ 𝐴𝐵 𝐶 + 𝐴𝐶 𝐵 + 𝐵𝐶 𝐴 − 2 𝐴 𝐵 𝐶

• This creates a decomposition into a product of lower order variables, thus 
ending the hierarchy
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Theory: Quantized Hamiltonian Dynamics

𝑑 𝑞

𝑑𝑡
=

𝑝

𝑚

𝑑 𝑝

𝑑𝑡
= − 𝑉′

𝑑 𝑞2

𝑑𝑡
= 2

𝑝𝑞 𝑠

𝑚

𝑑 𝑝𝑞 𝑠

𝑑𝑡
=

𝑝2

𝑚
− 𝑞𝑉′

𝑠

𝑑 𝑝2

𝑑𝑡
= −2 𝑝𝑉′

𝑠

𝐴𝐵 𝑠 =
𝐴𝐵 + 𝐵𝐴

2
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Quantized Hamiltonian 
Dynamics

Methods Development
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𝑑 𝑞

𝑑𝑡
=

𝑝

𝑚

𝑑 𝑝

𝑑𝑡
= − 𝑉′

𝑑 𝑞2

𝑑𝑡
= 2

𝑝𝑞 𝑠

𝑚

𝑑 𝑝𝑞 𝑠

𝑑𝑡
=

𝑝2

𝑚
− 𝑞𝑉′

𝑠

𝑑 𝑝2

𝑑𝑡
= −2 𝑝𝑉′

𝑠

Objective: Have Python derive these 
formulas of interest



Code: Quantized Hamiltonian Dynamics
The Hamiltonian:
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Code: Quantized Hamiltonian Dynamics

• 150+ Lines of Code
The Time Derivative Function:

𝑖ℏ
𝑑 መ𝐴

𝑑𝑡
= [ መ𝐴, ෡𝐻]
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Code: Quantized Hamiltonian Dynamics

1. Compute the Hamiltonian using the placeholder 
values

The Time Derivative Function:
𝑖ℏ

𝑑 መ𝐴

𝑑𝑡
= [ መ𝐴, ෡𝐻]

19

𝑡𝑖𝑚𝑒_𝑑𝑒𝑟𝑖𝑣(𝑞, 1)

--hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*q*f(q) - v(q)*q*f(q) + 
 q*-hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*f(q) + q*v(q)*f(q)

Objective: Replace 
the “placeholder” 
values with what is 
supposed to be taken 
the derivative of



Code: Quantized Hamiltonian Dynamics

2. Find the “placeholder” values and the “end” values
The Time Derivative Function:

𝑖ℏ
𝑑 መ𝐴

𝑑𝑡
= [ መ𝐴, ෡𝐻]

20

--hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*q*f(q) - v(q)*q*f(q) + 
 q*-hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*f(q) + q*v(q)*f(q)

𝑡𝑖𝑚𝑒_𝑑𝑒𝑟𝑖𝑣(𝑞, 1)



Code: Quantized Hamiltonian Dynamics

3. Find the function that will be replace the placeholder 
The Time Derivative Function:

𝑖ℏ
𝑑 መ𝐴

𝑑𝑡
= [ መ𝐴, ෡𝐻]
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--hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*q*f(q) - v(q)*q*f(q) + 
 q*-hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*f(q) + q*v(q)*f(q)

𝑡𝑖𝑚𝑒_𝑑𝑒𝑟𝑖𝑣(𝑞, 1)



Code: Quantized Hamiltonian Dynamics

4. Replace the placeholder with the expression of 
interest

The Time Derivative Function:
𝑖ℏ

𝑑 መ𝐴

𝑑𝑡
= [ መ𝐴, ෡𝐻]
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--hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*q*f(q) - v(q)*q*f(q) + 
 q*-hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*f(q) + q*v(q)*f(q)



Code: Quantized Hamiltonian Dynamics

5. Solve

The Time Derivative Function:
𝑖ℏ

𝑑 መ𝐴

𝑑𝑡
= [ መ𝐴, ෡𝐻]
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The Time Derivative Function:

Code: Quantized Hamiltonian Dynamics

--hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*q*f(q) - v(q)*q*f(q) + 
 q*-hbar*i*Derivative(-hbar*i*Derivative(1, q), q)/(2*mass)*f(q) + q*v(q)*f(q)



𝑑 𝑞

𝑑𝑡
=

𝑝

𝑚

𝑑 𝑝

𝑑𝑡
= − 𝑉′

𝑑 𝑞2

𝑑𝑡
= 2

𝑝𝑞 𝑠

𝑚

𝑑 𝑝𝑞 𝑠

𝑑𝑡
=

𝑝2

𝑚
− 𝑞𝑉′

𝑠

𝑑 𝑝2

𝑑𝑡
= −2 𝑝𝑉′

𝑠

Code: Computing Equations of Motion for 
Quantized Hamiltonian Dynamics
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Quantized Hamiltonian 
Dynamics

Applications

26

𝑑 𝑞

𝑑𝑡
=

𝑝

𝑚

𝑑 𝑝

𝑑𝑡
= − 𝑉′

𝑑 𝑞2

𝑑𝑡
= 2

𝑝𝑞 𝑠

𝑚

𝑑 𝑝𝑞 𝑠

𝑑𝑡
=

𝑝2

𝑚
− 𝑞𝑉′

𝑠

𝑑 𝑝2

𝑑𝑡
= −2 𝑝𝑉′

𝑠



Results: Quantized Hamiltonian Dynamics

Morse Potential:
𝑉(𝑞) = 𝐷 ∗ 1 − 𝑒−α 𝑞−𝑞0

2

Variables:

mass = mass of water

q0 = equilibrium position

alpha = “width” of potential

D =  well depth

dt = timestep
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• Graphs created with MatPlotLib library



Variables:

mass = 1836 a.u.

q0 = 0.0 Å

q = 0.15 Å

alpha = 2.567 Å-1 

D = 4.419 eV

dt = 0.1 fs
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Results: Quantized Hamiltonian Dynamics

Akimov, A. V.; Prezhdo, O. V. Formulation of Quantized Hamiltonian Dynamics in Terms of Natural Variables. J. Chem. Phys. 2012, 137 (22), 224115. 

https://doi.org/10.1063/1.4770224. 

Morse Potential

• Graphs created with MatPlotLib library
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Results: Quantized Hamiltonian Dynamics

Symbolic Method Original Method

Morse Potential

• Provides a simple yet versatile way of 
computing the equations of motion

• Computes the equations of motion using 
one function

• Can be applied to any potential

• Had to compute each equation of motion 
by hand

• Uses different functions for each equation 
of motion

• Specific to one potential
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Results: Quantized Hamiltonian Dynamics

QHD Method Classical Method

Morse Potential

• Graphs created with MatPlotLib library



Results: Quantized Hamiltonian Dynamics

Gaussian Potential:
𝑉 𝑞 = −𝑉0 ∗ 𝑒 −α∗𝑞2

Where:

α =
1

2 ∗ σ2

Variables:

mass = mass of water

V0 = well depth

sigma = broadness of well

q = position

dt = timestep
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• Graphs created with MatPlotLib library
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Results: Quantized Hamiltonian Dynamics

Variables:
mass = 1836 a.u.
V0 = 5 eV
sigma = 1.5 Å
q = 0.15 Å
dt = 0.1 fs

Gaussian Potential

• Graphs created with MatPlotLib library



Jupyter Notebook: Quantized Hamiltonian 
Dynamics
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Results: Quantized Hamiltonian Dynamics

• Tunneling

Potential:

𝑉 𝑞 =
𝑞2

2
+ 𝑎𝑞3

Variables:

mass = mass of water

q = position

a = barrier size

dt = timestep
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Results: Quantized Hamiltonian Dynamics

Tunneling
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Variables:
mass = 1836 a.u.
q = 1 Å
a = 0.1
dt = 0.1 fs



Conclusions

• The PySyComp library is an effective introduction to using Python, 
Jupyter Notebooks, and the SymPy and Matplotlib libraries

• The `time_deriv` function is effective in producing the desired 
equations of motions

Working on…

• Running the QHD code from the command line

• Optimizing the code
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Extra Slides
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Outline

Background & 
Motivation
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Particle in a Box
Computing the 
normalization 

constant, expectation 
values

Commutators
Computing the 

commutator

`steps` function

Quantized 
Hamiltonian 

Dynamics
Methods development

Applications



Particle in a Box
An Introductory Problem to 
Quantum Mechanics for 
Undergraduate Students
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Theory: Particle in a Box

• If x < 0:
• 𝑉 = ∞

• If x > L:
• 𝑉 = ∞

• If 0 < x < L:
• 𝑉 = 0

Ψ = sin(
𝑛𝜋𝑥

𝐿
) 

40

n=1

n=2

• Graphs created with MatPlotLib library



Code: Particle in a Box
PIB Wave Function:
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PIB Normalization Constant:

PIB Expectation Value:

• Provides a straightforward way to compute different values associated with the Particle in a Box 
problem



Jupyter Notebook: Particle in a Box
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Results: Quantized Hamiltonian Dynamics

• Morse Potential: Change of Variables
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𝑑 𝑞

𝑑𝑡
=

𝑝

𝑚

𝑑 𝑝

𝑑𝑡
= − 𝑉′

𝑑 𝑞2

𝑑𝑡
= 2

𝑝𝑞 𝑠

𝑚

𝑑 𝑝𝑞 𝑠

𝑑𝑡
=

𝑝2

𝑚
− 𝑞𝑉′

𝑠

𝑑 𝑝2

𝑑𝑡
= −2 𝑝𝑉′

𝑠

𝑑 𝑝

𝑑𝑡
= 2𝛼𝐷[ 𝑥2 − 𝑥 ]

𝑑 𝑥

𝑑𝑡
= −𝛼

(𝑝𝑥)𝑠

𝑚

𝑑 𝑥2

𝑑𝑡
= −2𝛼

(𝑝𝑥2)𝑠

𝑚

𝑑 𝑝𝑞 𝑠

𝑑𝑡
=

𝑝2

𝑚
+ 2𝛼𝐷[ 𝑞𝑥2

𝑠 − 𝑞𝑥 𝑠 ]

𝑑 𝑝2

𝑑𝑡
= 4𝛼𝐷[ (𝑝𝑥2)𝑠 − 𝑝𝑥 𝑠 ]

Same

Same

𝑥 = 𝑒−𝛼𝑞        𝑉 𝑞 = 𝐷[ 𝑥2 − 2 𝑥 ]
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Results: Quantized Hamiltonian Dynamics

Symbolic Method Original Method

Morse Potential



Variables:

mass = 1836 a.u.

q0 = 0.0 Å

alpha = 2.567 Å-1 

D = 4.419 eV

dt = 0.1 fs
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Results: Quantized Hamiltonian Dynamics

Akimov, A. V.; Prezhdo, O. V. Formulation of Quantized Hamiltonian Dynamics in Terms of 

Natural Variables. J. Chem. Phys. 2012, 137 (22), 224115. https://doi.org/10.1063/1.4770224. 
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Results: Quantized Hamiltonian Dynamics

Symbolic Method Original Method
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Results: Quantized Hamiltonian Dynamics



Energy Conservation
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Results: Quantized Hamiltonian Dynamics
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Results: Quantized Hamiltonian Dynamics



Energy Conservation
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Results: Quantized Hamiltonian Dynamics
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