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Background: Simulations of Nuclear Fuels

Uranium Dioxide (Nuclear Cell)

Why do we simulate nuclear fuels?

Can we create a machine learning interatomic 
potential (MLIP) that can accurately predict 

values within reasonable error to experimental 
values?
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Allows a better understanding of nuclear fuels under 
varying conditions which can be difficult to investigate 

experimentally.

Simulations help predict nuclear fuel properties.



Kulichenko, M. et al. “The Rise of Neural Networks for Materials and Chemical 
Dynamics.” J. Phys. Chem. Lett., 2021,12,26,6227-6243

Background: Machine Learning

Smith, J. et al. “Automated discovery of a robust interatomic potential for 
aluminium.” Chem. Sci., 2017,8, 3192-3203.

stippell@usc.edu 2

Computational 
affordability without 
sacrificing accuracy

Computational 
speed

Why use machine learning? 1. Active Learning 2. Transfer Learning



Methods: Building a Machine Learning Potential

DFT Density Functional Theory
MLIP Machine Learning Interatomic Potential
DFT+U DFT plus Hubbard Parameter

Active Learning ML
An iterative method that automatically trains the MLIP

1. Sampling
• Atomic coordinates are generated and added to training dataset

2. Labeling
• Energies and forces for each atom (in each system) assigned

3. Training
• Fit the MLIP to the training dataset, described by steps 1 and 2
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Methods: Building a Machine Learning Potential

Question: Why did we add DFT+U 
structures?

Answer: More accurate! DFT+U 
includes antiferromagnetic 

properties important in the ground 
state of uranium and other actinides

Tradeoff: High cost for high accuracy

Active 
learning 
potential 

(DFT data)

Transfer 
learning 
potential 

(DFT+U data)
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Transfer learning retains 
information from the pre-

trained larger dataset



Results: Temperature Dependent Properties

MLIP-DFT+U overestimates lattice 
parameters by ~0.10Å
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Qualitatively, MLIP-DFT+U follows a 
similar trend to experiment

4x4x4 supercell
768 atoms

UO2

Two different machine 
learning interatomic 
potentials (MLIPs):

1. Sole DFT data
2. Mixture of DFT+U and 

DFT data

Dataset consists of:
• 96 atom supercell

• MD simulations from 
300 – 2,500 K

• Both zero pressure and 
non-zero pressure 

systems
• Structures containing 

point defects

Cooper, M. et al. “A Many-Body Potential Approach to Modelling the 

Thermomechanical Properties of Actinide Oxides.” J. Phys.: Condens. Matter 
2014, 26 (10), 105401.



Results: Temperature Dependent Properties
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Qualitatively, MLIP-DFT follows a 
similar trend to experiment

MLIP-DFT+U provides great 
accuracy compared to experiment 

at high temperatures
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MLIP-DFT provides great accuracy 
compared to experiment at lower 

temperatures

MLIP-DFT+U performs better than 
the Yakub force field



Results: Zero Temperature Properties

Property MLIP-DFT MLIP-DFT+U FF DFT DFT+U Exp.

a (Å) 5.45 (-0.42%) 5.51 (+0.68%) 5.45 5.42 5.54 5.473*

C11 (GPa) 389.47 
(+0.04%)

344.75 
(-11.44%) 406.3 371.7 393.8 389.3

C12 (GPa) 121.21 
(+2.04%)

118.20
 (-0.42%) 124.7 117.5 114.7 118.7

C44 (GPa) 77.98 
(+30.62%)

37.19 
(-37.71%) 63.89 66.3 63.9 59.7

B (GPa) 207.80 
(-0.53%)

190.98 
(-8.58%) 218.6 202.9 197 208.9
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Similar to the temperature dependent lattice 
parameter, DFT+U overestimates the zero-

temperature lattice parameter

The MLIP-DFT shows agreement with 
experimental values

Elastic 
Constants

Cooper, M. et al. “A Many-Body Potential Approach to Modelling the 

Thermomechanical Properties of Actinide Oxides.” J. Phys.: Condens. Matter 
2014, 26 (10), 105401.

Lattice Parameter

*Value at ambient temperature



Defect energy 
(eV) MLIP-DFT

MLIP-
DFT+U FF DFT (Lit.) DFT+U (Lit.) Exp.

SDisolated 5.26 6.31 10.64 5.6-10.6 4.2-11.8 6.0-7.0
SD1 4.09 4.30 6.18
SD2 3.95 3.96 5.27
SD3 3.92 3.86 5.05

U-FPisolated 9.40 10.15 15.47 10.6-17.2 9.1-16.5 9.5
U-FP1 6.83 7.30 11.09

O-FPisolated 5.86 5.25 5.73 2.6-5.77 2.4-7.0 3.0-4.0
O-FP1 3.94 4.36 5.37
O-FP2 3.95 4.26 4.94

Results: Defect Energies

Red: oxygen
Blue: uranium

Yellow: vacancy
Dark Blue: interstitial

Schottky (SD)
The Removal of one 

UO2 unit

Frenkel Pair (FP)
The removal of an 

atom and an 
inclusion of an 

interstitial atom

Cooper, M. et al. “A Many-Body Potential Approach to Modelling the 

Thermomechanical Properties of Actinide Oxides.” J. Phys.: Condens. Matter 
2014, 26 (10), 105401.
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MLIP-DFT+U performs 
better than classical 

force fields when 
compared to 
experiment



Conclusions
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The active learning MLIP paired with transfer learning was 
successful in reproducing important characteristics of 

uranium oxide.

By including DFT+U data, the accuracy of the MLIP 
increased, showing the importance of antiferromagnetism 

in nuclear fuels.

Moving Forward
This model can be improved by training the MLIP using 

experimental data.
This model can be expanded to include other novel nuclear 

fuels, including UN and UC.
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