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Background: Simulations of Nuclear Fuels

Why do we simulate nuclear fuels?

Allows a better understanding of nuclear fuels under
varying conditions which can be difficult to investigate
experimentally.

Simulations help predict nuclear fuel properties.

Can we create a machine learning interatomic
potential (MLIP) that can accurately predict
values within reasonable error to experimental
values?
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Background: Machine Learning

Why use machine learning? 1. Active Learning 2. Transfer Learning
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Methods: Building a Machine Learning Potential

o
DFT Density Functional Theory
DFT dataset Dataset DFT+U dataset MLIP Machine Learning Interatomic Potential
25.000 structures reduction 2,000 structures D FT+U DFTpIUS Hubbard Parameter
Train ANI ( Active Learning Retrain ANI
Transfer Learning
(freeze layers)
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|(System Generation)
Active Learning ML il
nsemble
An iterative method that automatically trains the MLIP ¢
1. Sampling ST Ensemble QM Data
* Atomic coordinates are generated and added to training dataset Dynamics [ %" Bl = Generation
. Simulation
2. Labeling
* Energies and forces for each atom (in each system) assigned New Test ¢ Selected
. . g ( y ) & Uncertainty
3. Training Estimate

* Fitthe MLIP to the training dataset, described by steps 1 and 2
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Methods: Building a Machine Learning Potential
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Question: Why did we add DFT+U
structures?

Answer: More accurate! DFT+U
includes antiferromagnetic
properties importantin the ground
state of uranium and other actinides

Tradeoff: High cost for high accuracy

Transfer
learning

potential
(DFT+U data)

Transfer learning retains
information from the pre-
trained larger dataset




Results: Temperature Dependent Properties

Two different machine
learning interatomic
potentials (MLIPs):

1. Sole DFT data
2. Mixture of DFT+U and

DFT data

Dataset consists of:
* 96 atom supercell
* MD simulations from
300-2,500K
* Both zero pressure and
non-zero pressure
systems
e Structures containing
point defects

4x4x4 supercell
768 atoms
uo,

Cooper, M. et al. “A Many-Body Potential Approach to Modelling the
Thermomechanical Properties of Actinide Oxides.” J. Phys.: Condens. Matter

2014, 26 (10), 105401.
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MLIP-DFT+U overestimates lattice
parameters by ~0.10A

Qualitatively, MLIP-DFT+U follows a

similar trend to experiment




Results: Temperature Dependent Properties
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MLIP-DFT+U provides great
accuracy compared to experiment
at high temperatures

MLIP-DFT provides great accuracy
compared to experiment at lower
temperatures
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Qualitatively, MLIP-DFT follows a
similar trend to experiment

MLIP-DFT+U performs better than
the Yakub force field
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Results: Zero Temperature Properties
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The MLIP-DFT shows agreement with
experimental values

Similar to the temperature dependent lattice
parameter, DFT+U overestimates the zero-
temperature lattice parameter

*Value atambient temperature

Cooper, M. etal. “A Many-Body Potential Approach to Modelling the )
Thermomechanical Properties of Actinide Oxides.” J. Phys.: Condens. Matter stippell@usc.edu 7
2014, 26 (10), 105401.



Results: Defect Energies

Frenkel Pair (FP)
The removal of an
atom and an
inclusion of an
interstitial atom

Defect energy MLIP- . .

Schottky (SD)

The Removal of one
UO, unit

Red: oxygen 5.26 6.31 10.64 5.6-10.6 4.2-11.8  6.0-7.0
Blue: uranium “ 4.09 4.30 6.18
Yellow: vacancy m 3.95 3.96 5.7
Dark Blue: interstitial e 3' o 3' o 5' 05
MLIP-DFT+U performs 9.40 10.15 15.47 ot 2| 9.1-16.5 9.5
better than classical m 6.83 7.30 11.09
force fields when 5.86 5.25 5.73 2.6-5.77 2.4-7.0  3.0-4.0
Cooper, M. etal. “A Many-Body Potential Approach to Modelling the stippell@usc.edu 8

Thermomechanical Properties of Actinide Oxides.” J. Phys.: Condens. Matter
2014, 26 (10), 105401.



Conclusions

The active learning MLIP paired with transfer learning was
successfulin reproducing important characteristics of
uranium oxide.
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