How Molecular Dynamics Simulations Provide New Insights to Energy Materials

Liz Stippell

4th year Phd student, Prezhdo Group

Physical-Theoretical Chemistry

Dana and David Dornsife College of Letters, Arts and Sciences

The pursuit of new energy materials

Question

From a first principles/theory perspective, what makes a material an efficient energy material?

Proposed energy materials

Perovskite ("Solar" Cell)

Uranium Dioxide ("Nuclear" Cell)

Methods and Theories Overview

How using innovative methods can lead to more accurate simulations and new discoveries

Why we use molecular dynamics (MD) simulations

Using machine learning (ML) for nuclear fuels

DFT Density Functional TheoryMLIP Machine Learning Interatomic PotentialDFT+U DFT plus Hubbard Parameter

Active Learning ML

An iterative method that automatically trains the MLIP

- 1. Sampling
 - Atomic coordinates are generated and added to training dataset
- 2. Labeling
 - Energies and forces for each atom (in each system) assigned
- 3. Training
 - Fit the MLIP to the training dataset, described by steps 1 and 2

Question: Why did we add DFT+U structures?

Answer: More accurate! Some structures had **high energy/force deviations** that required a more robust computation

Tradeoff: High cost for high accuracy

Results: ML development for uranium dioxide

Nonadiabatic coupling

Voorhis, T. V. et al. Annual Review of Physical Chemistry 2010, 61 (Volume 61, 2010), 149–170.

Na-Cl distance

Born-Oppenheimer approximation: Nuclei move slow compared to electrons

Adiabatic vs. Diabatic

Adiabatic

Based on the Born-Oppenheimer Approximation

Changes its physical character to remain an eigenstate of the electronic Hamiltonian

Diabatic

Does not change its physical character as one moves along a reaction coordinate/path

Charge transfer

Marcus, R. A. The Journal of Chemical Physics 1965, 43 (8), 2654-2657.

Computing Nonadiabatic coupling

Results: Perovskite solar cells

Why does adding fluorine to 2D perovskite crystals enhance efficiencies?

		Organic Spacers	Inorganic Crystals
Average	BZA	1.25	0.81
displace ment (Å)	F-BZA	1.02	0.72

Fluorine substitution enhances the PCE of the 2D perovskite **not** through coupling effects but through **reorganization energy and structural stabilization**.

More energy fluctuations

Less energy fluctuations

Published papers based on this work

Contents lists available at ScienceDirect

Artificial Intelligence Chemistry

journal homepage: www.journals.elsevier.com/artificial-intelligence-chemistry

ARTIFICIAL INTELLIGENCE CHEMISTRY

Building a DFT+U machine learning interatomic potential for uranium dioxide

Elizabeth Stippell^{a,b}, Lorena Alzate-Vargas^a, Kashi N. Subedi^a, Roxanne M. Tutchton^a, Michael W.D. Cooper^c, Sergei Tretiak^{a,d}, Tammie Gibson^a, Richard A. Messerly^{a,*}

^a Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
^b University of Southern California, Los Angeles, CA 90007, USA
^c MST-8, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
^d Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

www.acsami.org

Enhancing Interlayer Charge Transport of Two-Dimensional Perovskites by Structural Stabilization via Fluorine Substitution

Elizabeth Stippell, Wei Li, Claudio Quarti, David Beljonne, and Oleg V. Prezhdo*

Extra Slides

