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Machine learning (ML) potentials

Kulichenko, M. et al. “The Rise of Neural Networks for Materials and 
Chemical Dynamics.” J. Phys. Chem. Lett., 2021,12,26,6227-6243
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Active Learning Machine 

Learning
The ANI Potential



Active learning: An automated iterative approach to

develop ML potentials

Smith, J. et al. “Automated discovery of a robust interatomic 
potential for aluminium.” Chem. Sci., 2017,8, 3192-3203.

• Automated, iterative, and 
efficient approach to 
build dataset to train ML 
potential

• Structures generated 
from preliminary ML 
potentials

• DFT calculation in VASP
- PBE functional
- GTH pseudopotentials
- 2x2x2 supercell



Experimental Validation of the ANI Active Learning ML 

Potential

• 4x4x4 supercell (768 atoms)
• Calculations performed in LAMMPS

Cooper, M. et al. “A Many-Body Potential Approach to Modelling the Thermomechanical 

Properties of Actinide Oxides.” J. Phys.: Condens. Matter 2014, 26 (10), 105401.



Defect Energies

Schottky (SD)

• The removal of one UO2 unit

Frenkel Pair (FP)

• The removal of an atom and an 
inclusion of an interstitial atom

Red: oxygen
Blue: uranium

Yellow: vacancy
Dark Blue: interstitial
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Defect Energies
Defect 

Energy 

(eV)

ANI-

ML

Classical 

(EAM)

DFT (Lit.) Defect 

Energy 

(eV)

ANI-ML Classical 

(EAM)

DFT (Lit.)

SD 

(isolated)

5.26 10.64 5.6-10.6 U-FP 

(isolated)

9.40 15.47 10.6-17.2

SD1 4.09 6.18 U-FP1 6.83 11.09

SD2 3.95 5.27 O-FP 

(isolated)

5.86 5.73 2.6-5.77

SD3 3.92 5.05 O-FP1 3.94 5.37

O-FP2 3.95 4.94

Cooper, M. et al. “A Many-Body Potential Approach to Modelling the Thermomechanical 

Properties of Actinide Oxides.” J. Phys.: Condens. Matter 2014, 26 (10), 105401.
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Transfer Learning Machine 

Learning
The ANI Potential



Transfer Learning Algorithm

Smith, J. et. al. “Outsmarting Quantum Chemistry Through Transfer Learning.” ChemRxiv July 6, 2018. 
https://doi.org/10.26434/chemrxiv.6744440.v1.

DFT+U
dataset

• Train using active learning and a 
DFT data set

• Subsample structures and 
recalculate with DFT+U

• Retrain the ML potential with a 
reduced DFT+U dataset, freezing 
specific layers

• DFT data set: 25,000+
• DFT+U data set: 1,000

DFT
dataset

DFT+UDFT



Experimental Validation of the ANI Transfer Learning ML 

Potential

Cooper, M. et al. “A Many-Body Potential Approach to Modelling the Thermomechanical 

Properties of Actinide Oxides.” J. Phys.: Condens. Matter 2014, 26 (10), 105401.
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Defect Energies: Transfer Learning (0, 1, 2 Layers Frozen)

Defect 

Energy 

(eV)

ANI-

ML

ANI 

(TL)

DFT (Lit.) Defect 

Energy 

(eV)

ANI-ML ANI 

(TL)

DFT (Lit.)

SD 

(isolated)

5.26 6.18 5.6-10.6 U-FP 

(isolated)

9.40 10.76 10.6-17.2

SD1 4.09 4.45 U-FP1 6.83 7.71

SD2 3.95 4.12 O-FP 

(isolated)

5.86 6.19 2.6-5.77

SD3 3.92 4.04 O-FP1 3.94 4.71

O-FP2 3.95 4.65

Cooper, M. et al. “A Many-Body Potential Approach to Modelling the Thermomechanical Properties of Actinide Oxides.” J. Phys.: Condens. 

Matter 2014, 26 (10), 105401.



Conclusions and Continuations

The active learning ML potential has 
been effective at reproducing values for 

lower temperatures (<2,300K)

Transfer learning is a promising method 
for generating results that better reflect 

experimental data as well as data 
generated via classical FF

Continuations

To better improve results, the transfer 
learning method is going to be retrained 

with more DFT+U data



Extra Slides



Molecular Dynamics: An Overview of Methods

• Structural properties: 
• Radial distribution function

• Thermophysical properties:
• Density

• Melting temperature

• Transport properties:
• Diffusivity

• Thermal conductivity

• Density functional theory 
(DFT) / Kohn-Sham DFT

• Plane wave (PW)

• Pseudopotentials 

• Classical potentials (force 
fields):

• Embedded atom 
method (EAM)

• Lennard-Jones 12-6

• Machine-learning (ML) 
potentials:

• Neural networks



Validation of the ML Potential

• Dataset of 25,000+ structures



Comparing the ANI (ML) Potential and the Classical EAM 

Potential

Property ANI-

ML

Classical 

(EAM)

DFT Experim

ental

C11 (GPa) 394.5 406.3 371.7 389.3

C12 (GPa) 118.3 124.7 117.5 118.7

C44 (GPa) 76.3 63.89 66.3 59.7

B (GPa) 207.1 218.6 202.9 208.9



Transfer Learning 

Algorithm (Cont.)



Validation of the Transfer Learning ML Potential

• Dataset of 1,000 structures
• Layers frozen: 0, 1, 2
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Defect Energies: Transfer Learning (0, 1, 2 Layers Frozen)

Defect 

Energy 

(eV)

ANI-

ML

ANI 

(0, 1, 2)

Classical 

(EAM)

Defect 

Energy 

(eV)

ANI-ML ANI 

(0, 1, 2)

Classical 

(EAM)

SD 

(isolated)

5.26 6.18 10.64 U-FP 

(isolated)

9.40 10.76 15.47

SD1 4.09 4.45 6.18 U-FP1 6.83 7.71 11.09

SD2 3.95 4.12 5.27 O-FP 

(isolated)

5.86 6.19 5.73

SD3 3.92 4.04 5.05 O-FP1 3.94 4.71 5.37

O-FP2 3.95 4.65 4.94

Cooper, M. et al. “A Many-Body Potential Approach to Modelling the Thermomechanical Properties of Actinide Oxides.” J. Phys.: Condens. 

Matter 2014, 26 (10), 105401.
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Enthalpy
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