

Training Machine Learning Potentials for Nuclear Fuels

Elizabeth Stippell T-1 Mentor: Richard Messerly

Lorena Alzate Vargas, Tammie Gibson

07/26/2023

LA-UR-23-28072

Machine learning (ML) potentials

Kulichenko, M. et al. "The Rise of Neural Networks for Materials and Chemical Dynamics." *J. Phys. Chem. Lett.*, 2021,**12**,26,6227-6243

Active Learning Machine Learning The ANI Potential

Active learning: An automated iterative approach to develop ML potentials

Smith, J. et al. "Automated discovery of a robust interatomic potential for aluminium." *Chem. Sci.*, 2017,**8**, 3192-3203.

- Automated, iterative, and efficient approach to build dataset to train ML potential
- Structures generated from preliminary ML potentials
- DFT calculation in VASP
 - PBE functional
 - GTH pseudopotentials
 - 2x2x2 supercell

Experimental Validation of the ANI Active Learning ML Potential

- 4x4x4 supercell (768 atoms)
- Calculations performed in LAMMPS

Cooper, M. et al. "A Many-Body Potential Approach to Modelling the Thermomechanical Properties of Actinide Oxides." *J. Phys.: Condens. Matter* **2014**, *26* (10), 105401.

Defect Energies

Red: oxygen Blue: uranium Yellow: vacancy Dark Blue: interstitial

Schottky (SD)

• The removal of one UO2 unit

Frenkel Pair (FP)

• The removal of an atom and an inclusion of an interstitial atom

Defect Energies

Defect Energy (eV)	ANI- ML	Classical (EAM)	DFT (Lit.)	Defect Energy (eV)	ANI-ML	Classical (EAM)	DFT (Lit.)
SD (isolated)	5.26	10.64	5.6-10.6	U-FP (isolated)	9.40	15.47	10.6-17.2
SD1	4.09	6.18		U-FP1	6.83	11.09	
SD2	3.95	5.27		O-FP (isolated)	5.86	5.73	2.6-5.77
SD3	3.92	5.05		O-FP1	3.94	5.37	
				O-FP2	3.95	4.94	

Cooper, M. et al. "A Many-Body Potential Approach to Modelling the Thermomechanical Properties of Actinide Oxides." *J. Phys.: Condens. Matter* **2014**, *26* (10), 105401.

Transfer Learning Machine Learning The ANI Potential

Transfer Learning Algorithm

- Train using active learning and a DFT data set
- Subsample structures and recalculate with DFT+U
- Retrain the ML potential with a reduced DFT+U dataset, freezing specific layers
- DFT data set: 25,000+
- DFT+U data set: 1,000

Smith, J. et. al. "Outsmarting Quantum Chemistry Through Transfer Learning." *ChemRxiv* July 6, 2018. https://doi.org/10.26434/chemrxiv.6744440.v1.

Experimental Validation of the ANI Transfer Learning ML Potential

Cooper, M. et al. "A Many-Body Potential Approach to Modelling the Thermomechanical Properties of Actinide Oxides." *J. Phys.: Condens. Matter* **2014**, *26* (10), 105401.

Defect Energies: Transfer Learning (0, 1, 2 Layers Frozen)

Defect Energy (eV)	ANI- ML	ANI (TL)	DFT (Lit.)	Defect Energy (eV)	ANI-ML	ANI (TL)	DFT (Lit.)
SD (isolated)	5.26	6.18	5.6-10.6	U-FP (isolated)	9.40	10.76	10.6-17.2
SD1	4.09	4.45		U-FP1	6.83	7.71	
SD2	3.95	4.12		O-FP (isolated)	5.86	6.19	2.6-5.77
SD3	3.92	4.04		O-FP1	3.94	4.71	
				O-FP2	3.95	4.65	

Cooper, M. et al. "A Many-Body Potential Approach to Modelling the Thermomechanical Properties of Actinide Oxides." *J. Phys.: Condens. Matter* **2014**, *26* (10), 105401.

Conclusions and Continuations

The active learning ML potential has been effective at reproducing values for lower temperatures (<2,300K)

Transfer learning is a promising method for generating results that better reflect experimental data as well as data generated via classical FF

Continuations

To better improve results, the transfer learning method is going to be retrained with more DFT+U data

Molecular Dynamics: An Overview of Methods

- Density functional theory (DFT) / Kohn-Sham DFT
 - Plane wave (PW)
 - Pseudopotentials
- Classical potentials (force fields):
 - Embedded atom method (EAM)
 - Lennard-Jones 12-6
- Machine-learning (ML) potentials:
 - Neural networks

- Structural properties:
 - Radial distribution function
- Thermophysical properties:
 - Density
 - Melting temperature
- Transport properties:
 - Diffusivity
 - Thermal conductivity

Validation of the ML Potential

• Dataset of 25,000+ structures

Comparing the ANI (ML) Potential and the Classical EAM Potential

Transfer Learning Algorithm (Cont.)

Validation of the Transfer Learning ML Potential

- Dataset of 1,000 structures
- Layers frozen: 0, 1, 2

Defect Energies: Transfer Learning (0, 1, 2 Layers Frozen)

Defect Energy (eV)	ANI- ML	ANI (0, 1, 2)	Classical (EAM)	Defect Energy (eV)	ANI-ML	ANI (0, 1, 2)	Classical (EAM)
SD (isolated)	5.26	6.18	10.64	U-FP (isolated)	9.40	10.76	15.47
SD1	4.09	4.45	6.18	U-FP1	6.83	7.71	11.09
SD2	3.95	4.12	5.27	O-FP (isolated)	5.86	6.19	5.73
SD3	3.92	4.04	5.05	O-FP1	3.94	4.71	5.37
				O-FP2	3.95	4.65	4.94

Cooper, M. et al. "A Many-Body Potential Approach to Modelling the Thermomechanical Properties of Actinide Oxides." *J. Phys.: Condens. Matter* **2014**, *26* (10), 105401.

