First-principles studies of strongly correlated states in defect spin qubits in diamond

He Ma, Nan Sheng, Marco Govoni and Giulia Galli

A Critical Review

Liz Stippell P.I.: Professor Oleg Prezhdo

Introduction

Strongly Correlated Crystalline Systems

Description

Cannot assume electrons to act independently of one another, needing multireference descriptions of the electrons

Applications

- Encoding quantum information
- Spin defects can illustrate fundamental quantum mechanics principles
 - Act as quantum sensors

Multireference Methods

RPA/cRPA

(constrained) Random phase approximation

- Does not account for dielectric screening effects (RPA)
- Effective Hamiltonian describes low-lying excitations using electronelectron interactions

Quantum Embedding Beyond-RPA

- Accounts for dielectric exchange-correlation effects
- Scalable to systems with hundreds of atoms

REKS-DFT

Spin-restricted ensemblereferenced Kohn-Sham DFT

- Weighted sum of Slater Determinants
- Collapses into KS-DFT for weak correlations

Methods

Theoretical and Computational

Quantum Embedding Theory

General Theory: The defects are described by a high-level of theory (multireference) whereas the bulk crystal is described by a low-level of theory (single-reference) Restrict Hamiltonian to active

space around Fermi level

$$H = \sum_{ij} t_{ij} a_i^{\dagger} a_j + \frac{1}{2} \sum_{ijkl} v_{ijkl} a_i^{\dagger} a_j^{\dagger} a_l a_k \rightarrow H^{eff} = \sum_{ij} t_{ij}^{eff} a_i^{\dagger} a_j + \frac{1}{2} \sum_{ijkl} v_{ijkl}^{eff} a_i^{\dagger} a_j^{\dagger} a_l a_k$$

One-electron term Accounts for kinetic energy and electron-nuclei interaction

 t_{ii}

Two-electron term Accounts for Coulomb interaction between electrons

Quantum Embedding Theory: going beyond RPA

Excitation Energies

		PBE		DDH		-								
System	n Excitation	RPA	Beyond- RPA	RPA	Beyond- RPA	Ref.	RPA	Beyond-RPA	RPA	Beyond-RPA				
NV	${}^{3}E \leftrightarrow {}^{3}A_{2}$	1.395	1.458	1.921	2.001	$2.180^7 (1.945^7)$	39%	33%	1.2%	2.8%				
	$^{1}E \leftrightarrow ^{3}A_{2}$	0.396	0.444	0.476	0.561	(1.190 ⁸)								
	${}^{1}A_{1} \leftrightarrow {}^{1}E$	0.815	0.993	0.900	1.198		46%	20%	32%	0.67%				
SiV	${}^{3}E \leftrightarrow {}^{1}A_{1}$ ${}^{3}E \leftrightarrow {}^{3}A$	0.184	0.020	0.545	0.243	$(0.344 - 0.430^{12})$ 1 568 ⁵⁵ (1 31 ⁵⁴)	110%	1835%	20%	50%				
517	$^{3}A_{1} \leftrightarrow ^{3}A_{2}$	1 386	1.236	1.390	1.394	1.508 (1.51)	110 %	103370	2970	5970				
	${}^{1}E_{\alpha} \leftrightarrow {}^{3}A_{2\alpha}$	0.232	0.281	0.261	0.336		5.1%	4.1%	18%	18%				
	$^{1}A_{1g}^{3} \leftrightarrow {}^{3}A_{2g}^{3}$	0.404	0.478	0.466	0.583									
	$^{1}A_{1u} \leftrightarrow ^{3}A_{2g}$	1.262	1.277	1.608	1.623									
~ • •	${}^{3}E_{u} \leftrightarrow {}^{3}A_{2u}$	-0.000	0.002	0.003	0.011	(0.007^{54})	-	250%	133%	36%				
GeV	${}^{3}E_{u} \leftrightarrow {}^{3}A_{2g}$	1.595	1.619	2.076	2.105		Percent error compared to experiment							
	$A_{1u} \leftrightarrow A_{2g}$	0.289	1./26	2.1/3	0.434									
	$^{1}A_{1a} \leftrightarrow ^{3}A_{2a}$	0.529	0.639	0.617	0.797									
	${}^{1}A_{11} \leftrightarrow {}^{3}A_{22}$	1.595	1.621	2.076	2.110									
	${}^{3}E_{u} \leftrightarrow {}^{3}A_{2u}$	-0.012	-0.011	-0.012	-0.009									
SnV	${}^{3}E_{u} \leftrightarrow {}^{3}A_{2g}$	1.579	1.599	2.069	2.091									
	${}^{3}A_{1u} \leftrightarrow {}^{3}A_{2g}$ 1.667 1.696		1.696	2.160	2.207		Authors state DDH values							
	$^{1}E_{g} \leftrightarrow ^{3}A_{2g}$	0.302	0.368	0.341	0.444						Percent error values			
	$A_{1g} \leftrightarrow A_{2g}$	0.565	0.6/8	0.649	0.830		are in be	re in better agreement			indicate RPA performs			
	$A_{1u} \leftrightarrow A_{2g}$ $^{3}E \leftrightarrow ^{3}\Delta_{2g}$	-0.017	-0.017	-0.017	-0.014		with the							
PbV	${}^{3}E_{u} \leftrightarrow {}^{3}A_{2a}$	1.910	1.934	2.464	2,493		etter than bevond-RPA							
	${}^{3}A_{1u} \leftrightarrow {}^{3}A_{2u}$	1.980	2.008	2.533	2.574		than PBE							
	${}^{1}E_{g} \leftrightarrow {}^{3}A_{2g}$	0.321	0.396	0.360	0.476									
	$^{1}A_{1g} \leftrightarrow ^{3}A_{2g}$	0.615	0.750	0.697	0.910									
	$^{1}A_{1u} \leftrightarrow {}^{3}A_{2g}$	1.894	1.916	2.446	2.476									
	$^{3}E_{u} \leftrightarrow ^{3}A_{2u}$	-0.023	-0.024	-0.025	-0.025									

Excitation Energies

		PBE	0	DDH		
System	Excitation	RPA	Beyond- RPA	RPA	Beyond- RPA	Ref.
NV	${}^{3}E \leftrightarrow {}^{3}A_{2}$	1.395	1.458	1.921	2.001	$2.180^7 (1.945^7)$
	$^{1}A_{1} \leftrightarrow ^{3}A_{2}$	1.211	1.437	1.376	1.759	
	${}^{1}E \leftrightarrow {}^{3}A_{2}$	0.396	0.444	0.476	0.561	
	${}^{1}A_{1} \leftrightarrow {}^{1}E$	0.815	0.993	0.900	1.198	(1.190^8)
	${}^{3}E \leftrightarrow {}^{1}A_{1}$	0.184	0.020	0.545	0.243	$(0.344 - 0.430^{12})$
SiV	${}^{3}E_{u} \leftrightarrow {}^{3}A_{2g}$	1.247	1.258	1.590	1.594	$1.568^{55} (1.31^{54})$
	${}^{3}A_{1u} \leftrightarrow {}^{3}A_{2g}$	1.386	1.416	1.741	1.792	
	${}^{1}E_{g} \leftrightarrow {}^{3}A_{2g}$	0.232	0.281	0.261	0.336	
	${}^{1}A_{1g} \leftrightarrow {}^{3}A_{2g}$	0.404	0.478	0.466	0.583	
	$^{1}A_{1u} \leftrightarrow {}^{3}A_{2g}$	1.262	1.277	1.608	1.623	-
	${}^{3}E_{u} \leftrightarrow {}^{3}A_{2u}$	-0.000	0.002	0.003	0.011	(0.007^{54})
GeV	${}^{3}E_{u} \leftrightarrow {}^{3}A_{2g}$	1.595	1.619	2.076	2.105	
	${}^{3}A_{1u} \leftrightarrow {}^{3}A_{2g}$	1.689	1.726	2.173	2.231	
	${}^{1}E_{g} \leftrightarrow {}^{3}A_{2g}$	0.288	0.355	0.329	0.434	
	$^{1}A_{1g} \leftrightarrow ^{3}A_{2g}$	0.529	0.639	0.617	0.797	
	$^{1}A_{1u} \leftrightarrow {}^{3}A_{2g}$	1.595	1.621	2.076	2.110	
	${}^{3}E_{u} \leftrightarrow {}^{3}A_{2u}$	-0.012	-0.011	-0.012	-0.009	
SnV	${}^{3}E_{u} \leftrightarrow {}^{3}A_{2g}$	1.579	1.599	2.069	2.091	
	${}^{3}A_{1u} \leftrightarrow {}^{3}A_{2g}$	1.667	1.696	2.160	2.207	
	$^{1}E_{g} \leftrightarrow ^{3}A_{2g}$	0.302	0.368	0.341	0.444	
	$^{1}A_{1g} \leftrightarrow ^{3}A_{2g}$	0.565	0.678	0.649	0.830	
	$^{1}A_{1u} \leftrightarrow {}^{3}A_{2g}$	1.570	1.591	2.060	2.086	
	${}^{3}E_{u} \leftrightarrow {}^{3}A_{2u}$	-0.017	-0.017	-0.017	-0.014	
PbV	${}^{3}E_{u} \leftrightarrow {}^{3}A_{2g}$	1.910	1.934	2.464	2.493	
	${}^{3}A_{1u} \leftrightarrow {}^{3}A_{2g}$	1.980	2.008	2.533	2.574	
	$^{1}E_{g} \leftrightarrow ^{3}A_{2g}$	0.321	0.396	0.360	0.476	
	$^{1}A_{1g} \leftrightarrow ^{3}A_{2g}$	0.615	0.750	0.697	0.910	
	$^{1}A_{1u} \leftrightarrow ^{3}A_{2g}$	1.894	1.916	2.446	2.476	
	${}^{3}E_{u} \leftrightarrow {}^{3}A_{2u}$	-0.023	-0.024	-0.025	-0.025	

13 out of 29 (~45%) involve excitations from triplet-to-triplet states, which the authors describe are not significantly affected by the beyond-RPA method

Authors state triplet excitations are insensitive to dielectric screening effects

11

Intersystem Crossings: finding answers to experimental challenges

SiV struggles experimentally with optical spin polarization

Computational results show ${}^{1}A_{1u}$ is higher in energy than the ${}^{3}A_{2u} - {}^{3}E_{u}$ manifold

Conclusions

Strengths of the paper

Weaknesses of the paper

- Provides the first predictions for excited state energies of various diamond-vacancy defects
- Suggests evidence for experimental struggles with optical spin polarization due to intersystem crossings
- Little description about the computational theory and method presented
- The beyond-RPA method predicts negative excitation energies for a variety of transitions
- Authors state the inclusion of dielectric screening doesn't affect the excitation energies of triplet states, weakening the main point

Extra Slides

Quantum Embedding Theory: going beyond RPA

Intersystem Crossings: finding answers to experimental challenges

 $^{1}A_{111}$ is reported slightly higher than the ${}^{3}A_{211} - {}^{3}E_{11}$ manifold in the case of SiV, where it is slightly lower for GeV, SnV, and PbV defects. This is suggested to be the reason SiV defects struggle experimentally with optical spin polarization, as the intersystem crossings are energetically unfavored. As the weight of the defect increases, this issue is overcome, and the intersystem crossings are energetically favorable.

